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C O N S T R U C T I O N  OF A N O N L O C A L  M O D E L  

F O R  D I F F E R E N T - M O D U L U S  V I S C O E L A S T I C  M E D I A  

A. V. Kobosev UDC 534.22 

A nonlocal mathematical model for a different-modulus viscoelastic body is constructed using the 
Godunov-Romenskii model for a viscoelastic body and the technique of constructing different-modulus media 
developed by V. P. Myasnikov et hi. This approach made it possible to describe, within a unique model, the 
theological behavior of liquid and solid bodies and also transitions from an elastic state to plastic, semi-brittle, 
brittle, and completely fractured states of bulk media. 

1. M o d e l  for a D i f f e r e n t - M o d u l u s  Elas t ic  Body.  In Euclidian space the elastic-strain tensor is 
the Almansi strain tensor ( r  are the tensor components in the Cartesian coordinate system xa, a = I, 3). 

Let us consider the expansion of the density of internal energy E in a power series of ~ and entropy 
s for relatively small deformations. In the case of an isotropic body, E depends only on the strain-tensor 
invariants l i ( l l~ [ [ ) ,  i = 1,3. Then, 

1 (s- ~)Ix + ~(I)71i, I~ -I- 1 ~ ,  2 Is + . . .  (1.1) (~ -- _~_ ~ Is ( S - O) -~ ~ ~ 8 3 ( S _It ~)2 D(. (I)~111 .]_ (~ l ls l l Z 

o o 
((I) =P E, where p is the initial density). The initial state is chosen so that elastic stresses are equal to zero 

' = 0. Hence, with accuracy to the additive constant (~ we have (Pa~ = 0) for ca0 = 0, and then ~%tJ 

( s -  ~ )+  ~ ( s -  ~ ) 2 -  b2(s- ])I1 + ~1~ + #eafle#a + - . . ,  

" .  " �9 =e#" + ( 1 / 2 ) r  ; ~ a e z ~ = I ~ - 2 1 2 ; a n d A a n d # a r e t h e  where bl = Css, b2 = - r  1, )~ 1111 
Lam~ parameters. Summation is always performed over repeating indices. Below, the strain and stress tensors 

are assumed to be symmetrical. In this case, T -  T =  ( b l ( s -  ~) - b211)/ op and s -  - (Op ( T -  T)  + b211)/bl 

(El = T is the temperature).  From the continuity equation with accuracy to second-order terms with respect 

to ~a~ we obtain p - ~/detH6~# - 2e~ll  - (1 - 11 + . . . )  (6a~ is the Kronecker symbol). 
Elastic stresses are defined by the Murnaghan formulas [1] 

2 ' . .  ! Pc,# = P(6,~k - eak)E%a = (1 -- 11 + .)(6ak - 2eak)(I),ka 

.~ AIx6~ B + 2#ea~ - b2 ( s -  ~)((1 - I1)6~Z - 2 e ~ )  (1.2) 

= AI16o, fl + 2#s~fl - b~ r r b2 o b~ "l~ bl p ( T -  T)((1 - l l )~ f l  - -  2~:a,0). 

Hooke's law is extended to the case where temperature stresses and strains are taken into account. 
Different approaches are applied to the construction of models for irregular media. For 

microinhomogeneous media, effective moduli of elasticity of various types are usually introduced. We use 
the technique developed in [2-4]. 
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Let us consider an elastic potential of the form 

1 
U = 2(L + K(~))I~ + [M + G(4)IEz, (l.3) 

where ( = l~/(e,~efla)t/2; E2 = r - 12/3; L =/k + 2#/3; and M = #. The functions K(~) and G(() are 
additive corrections to the bulk modulus and the shear modulus of the Hooke's law that are caused by the 
sensitivity of moduli to variation of (. 

From the condition U" = U" I! E 2 E2I| we obtain restrictions on the selection of corrections: 

3~21s + 2(3 - ~2)G} = 0. (1.4) 

In this case, 

p~z = (L + K(~))d6~a + 2(M + C(~.))d~a, (1.5) 

where d = Il = eaa and daa = ea# - d~a~/3 are the components of the strain deviator. It follows from (1.5) 

that the mean stress p = paa/3 and the stress intensity P0 = r (saa = p~,# - p~a~ is the stress 

deviator) depend on strains: 

p = (L + K(~))d = ~l(~)d, po = 3(M + G(~))do = 3W(~)d0. (1.6) 

Here do = r = k / / ~ - / 3  and W(~)/> 0. The volume and shear strains are connected by the relation 

Ii = (~/r  - ~ 2 / 3 ) V ~ 2  from which I~J ~< V~. 
We define the functions K(~) and G(~). For this purpose, according to (1.4) and (1.6), it is sufficient 

to find only one of them. If K(~) = ~(~) - L, then 

3 ~f {2-~f l~(~)d~ +G(O). = _ 

0 

One can set G(0) = 0. The constant M = W(0) is determined for pure shear deformation. If one uses the 
r e l a t i o n  = - M ,  t h e n  

2 ~ ~ 2 _ 3 W  ' 
= 5 + 

The constant L is determined from an experiment on hydrostatic compression when ~ = - v ~ ,  L = ~(--v/-3)- 

Let us find the dependence of strains On stresses. We introduce the variable 

p ~(L + K(~)) (1.7) 
p0 r  - ~2)(M + G(~))" 

Solving (1.7) for ~, we obtain ~ = ~(7). From (1.6) we have 

1 
d = fl(7)P, f l (7)  = [ L +  K(~(7))] -1, daz = ~f2(7)s~/~, f2(7) = [M + G(~(7))] - i .  

Hence, we obtain the required dependence 

1 
eaa = ~fl(7)P6aB + ~f2(7)saB �9 (1.8) 

Oleinikov [4] has shown the agreement of the different-modulus model and the experimental data which 
were derived in a series of tests on proportional loading of rocks. He has concluded that the function G(~) for 
most tested rocks (diabase, coal, limestone, cement, and salt) can be satisfactorily approximated by a linear 
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function and is decreasing. Using this, we set G(~) = -v~/2 ,  v >1 0 is const. Then, 

3 (  3 ) I v (  3 

Here without loss of generality one can assume K(-x /3)  = 2v~v/3. in this case, 

~,2 + 1*%~,, 

( l' ')e~#=hellS~#+21*eee'# ' p . ,  = (Al l  - v~/I~ - 2I~.)5~,~ + 21, - v VI-~I - 2I~ 

[P (~ ) ] 1 (  h e pS~,a~ ' 1 M + G(~) 1 pS,,, a = P,~a - 
c a a = 2 ( M + G ( ~ ) )  ~,a+ L + K ( ( )  ~ h e + 2 t t e / 3  ] 

(1.9) 

where h ~ = k - v/~ and 1.~ = 1. - u~/2 are the effective elastic moduli; the value of ( in the relations for 
strains is determined in terms of 7 from (1.7). The elastic potential includes an additional term that enables 
one to allow for the dependence of the elastic moduli on the type of stress state and their stepwise change in 
transition from tension to compression. 

Using the thermodynamic requirement of convexity of the elastic potential (of positive definiteness of 
the quadratic form of U), we obtain additional restrictions on the choice of model parameters. Taking into 
account the relations for the strain-tensor deviator ~f~ - (1/3)I16~# = (1/21*e)(p~ - p 6 ~ ) ,  from (1.6) and 
(1.9) we have 

1 p2 1 
U = 2(X~ + 21.~/3 ) + ~-~;~. ( p ~  - p ~ ) ( p . ~  - p~.~). 

The elastic potential is positively defined when 

21. - v~ > 0, 3A + 21. - v(~ + 3/~) > 0. (1.10) 

Let us use the representation (1.9) for U. From positive definiteness of the major minors of the matrix 

we obtain the missing restriction 

v 2 < 21.A. (1.11) 

Relation (1.11) gives the limiting value of v 2 = 21.A, for which, when Ii > 0, the potential loses 
convexity, and relation (1.10) v = 0 gives the convexity conditions for an elastic (Hooke's) medium for v = 0. 

Thus, the model for a different-modulus elastic body with a linearly decreasing dependence of the 
shear modulus on the parameter ~ is completely described. Construction of models for different-modulus 
media enables one to take into account the behavior of media relative to the sign and type of loading, which 
is due to material microinhomogeneity. 

2. G e n e r a l  E q u a t i o n s  of  t h e  Macroscop ic  M o d e l  for a D i f f e r e n t - M o d u l u s  Viscoelas t ic  
M e d i u m .  For strongly irregular media, one should apply a phenomenological approach. The basic principles 
of nonlocal models are developed in [5]. In this paper, we use a model for a viscoelastic body [I] in which the 
elastic parameters depend on the fracturing, of the medium. 

The equations of the laws of conservation of mass, momentum, and energy for multicomponent media 
in the Cartesian coordinate system are as follows: 

COp dci n 
CO--~ + Vpv = 0, P-d-t- = - v J i  + Mi ~ uijlj (i = 1, N - 1), j=, (2.1) 

dv,~ CO Pc~ + pF,~ (a ~,3), dE COvc~ dq e dq* 
P - COx---  = P-E = + P W  + p ,It ' 

746 



N N 
where t is time; p = ~] pi is the density" v = ~ civi is the velocity; Mi, pi, ci --= pi/p,  vi, and Ji = pi(vi - v) 

i=1 i=1 
are the molecular weight, density, mass concentration, velocity, and diffusion flow of the ith component; Ij and 

N 
uii are the velocity and stoichiometric coefficients of the j th  chemical energy ( Z u i i -  6); IIP zll, F, dq', and 

i=1 
dq* are the stress tensor, external mass force, heat influx, and nonthermal energy sources; and d/dt  is the 
substantial derivative. 

Elastic parameters depend on fracturing of the medium. In the same way as in the models of [6, 7], 
we introduce the parameter u for the degree of material damage 0 <~ u ~< 1. When u = 0, there are no 
microcracks. Elastic strains are described by Hooke's model (u = 0). When u = 1, the medium is completely 
fractured (u 2 = 2g)Q. Intermediate states (0 < u < 1) are described by the model of different-modulus media. 

The u variation results in energy dissipation. Let us write the balance equations of energy and entropy: 

i ~ E~7oudV~u, Tds  dq e + dq' (2.2) dE = E'~ ds + E~a~dec, a + Ecidci q- E,,du + = 

(dq' is the uncompensated heat). Simplifying the last term in (2.2) 

E' dVc, u , du - V ' du 

we represent the stress tensor by the sum of elastic, viscous, and structural stresses: 

Then, from (2.1) and (2.2) we obtain 

I 
P,'a = P~a + aaB - E v a u V a u .  (2.3) 

, du 
dq*dt = g + V ~ ( E v " u ~  -)' 

dq' _ ~ i deaa E ~ dci 5E du 
dt (Paa + a a a ) V a v a  - Eg,~ dt ci dt 5u dt + J" 

I 

Here J is the intensity of nonthermal sources (for example, radioactive ones); 5 E / S u  = E~ - VaE~7~ u is the 
variational derivative. 

Elastic stresses are defined by the Murnaghan formulas (1.2), and the elastic-stress tensor satisfies the 
equation 

d~aa 1. Ova Ov a . Ovk Ovk 1 

, t t  = + -g22  ) - - + 

(Ib, all is the relaxation matrix). Then, 

Ova , ( de~a 1 
pa#-~z # = pE, ,~ , \  -dt - ~ a ) "  (2.4) 

To describe the rheological properties of the medium, we shall use the linear phenomenological relations 

PaZ = L'I15aZ + 2 M ' d a z  - b~ . . b2 op ( T -  T)((1 - Ix)5~Z - 2e~a), 

, ( 2 . 5 )  

where L e = A e + 2#e/3; M e = #e; 7/and (" are the shear and volume viscosities; and H is a scalar function of 
(Vv) that is nonlinear in a general case; 

% a  = 2 \ O x  a + Oz~ 

We introduce the heat flux vector Jq to reduce the heat-influx dq e to the divergent form dq e = - (1 /p ) (VJq)d t .  
Using (2.4) and the equations of conservation of the concentration of the components, we write the equation 
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ds 1 N 
p-~'/ = V J ,  + as, J s = - ~ ( J q - ~ I t i J i ) ,  

i=! 

~ N #i P E' p~Edu 
a, = ---f- pJ + at, aT_ OzaOV~ TI Ajlj - (VT .  Jq) - ~--~(J, �9 V~-)  - ~ ~ , ~  T 6u dt 

j = l  i=1 

N 
Here Js is the entropy flux; ~rs is the power of energy sources; Aj = ~ #iMit.,ij; and #i = E' ci are the chemical 

i=1 
potentials of the components. 

According to the second thermodynamics law, ~r~ t> 0 and the equality is achieved only for reversible 
processes. The condition of nonnegativity of internal entropy production imposes additional restrictions on 
the relationships between thermodynamical forces and fluxes. Let us formulate these restrictions. 

By virtue of the Curie symmetry principle [8], 

1 , 0 v ~  PE '  1 N (  T )  
~a,~ZOx ~ ~-f , ,~,~a >! O, T2(VT" Jq) - ~ ]  Ji"  ~ >/O, 

i=l (2.6) 

1 A f l i -  1 H ( V - v )  >/0, 
6E du P 

- T  ~ T 6u dt >~ O. 
j = l  

Using the dissipativity postulate ~r~ ~7#va /> 0, which holds when 7/ >/ 0 and ( /> 0, we have # 
-(p/T)E~,aqoa# >10. Relaxation and friction are irreversible dissipative processes, each increasing entropy. 

Relaxation processes can be specified by the relations [9, 10] ~aa = - ( 2 / r ) ( e a a  - 6~,#petketk/p,tt) , '  ' where r is 
the relaxation time. 

To describe thermodynamic fluxes, we use linear phenomenological relations with symmetrical 
coefficients. Then, the second inequality in (2.6) is valid in the case of positive definiteness of the matrix 
of phenomenological coefficients [9]. Heat and diffusion fluxes are usually written as 

N - 1  

Ji = -P ~_, DilVcl -- pSi~71np -- pDTiVlnT, 
1=1 

" " o(.,o_:y)vc,)" J. = - VT + E h,J , -  . Z + E 
i=1 i=1 /=1 

Here hi = -T2a(# i /T) /aT  is the enthalpy of the ith component of the mixture; Da, Si, and DTi are the 
diffusion, barodiffusion (sedimentation), and thermal diffusion coefficients; ze is the thermal conductivity 
coeff• and p is the pressure. 

To describe chemical reactions, we use the general thermodynamical relations for nonequilibrium 
processes. In phenomenological description, the number n of independent reactions cannot exceed N. We 
assume that n = N. The general relations are of the form 

OK OK 
g - 0 ( V - v ) '  lj = --OA---j' (2.7) 

where K(p, T, A1 ... An, Vv) is the dissipative chemical potential which describes the chemical properties of 
mixtures. For them the required inequality should be satisfied. 

From the viewpoint of thermodynamics of nonequilibrium processes, physicochemical transformations 
are a particular case of possible scalar relaxation processes. Analysis of their interaction with the viscous-flow 
processes shows [11] that the rheological effect of chemical reactions is associated with volume viscosity (2.5). 

Volume viscosity changes significantly when the dependence of 1 i on the rate of volume change of a 
mixture component is strong. For most rocks viscous stresses are primarily determined by shear viscosity. In 
this case, volume viscosity and the dependence of the dissipative chemical potential on Vv can be ignored: 

of entropy balance as 
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From (2.6) we obtain fracture kinetics: 
du ~E 
dt - C ~su . (2.8) 

The elastic parameters A, #, and v depend on u. For example, 

A = A0(1 - f )  + Alf, /~ = #0(1 - f )  + /~ , f ,  u ---- tqf .  (2.9) 

Here ,~0 and #0 are the parameters for u = 0; Al, /~1, and ,1 = 2#1A1 are the parameters for u = 1, f(0) = 0, 
and f(1) = 1. As a function f (u) ,  one can use the volume portion of the damaged material of the element under 
consideration. Then, the medium can be considered a mechanical mixture of cured and fractured materials. 

Substituting (2.9) into (1.9), we obtain 

U = (1 - f)Uo + fU , ,  (2.10) 

where U0 = (k0/2)I  2 + #0e,Br and U, = (A,/2)I 2 + # , e ~ e ~  - u,I ,  ~v/~-#ea~. 
The dependence of E on u and Vu is specified in the form 

E(u, Vu)  = D(u - u,)2(u - u2) 2 + ~SVc, uVe, u (2.11) 

(Ul and u2 are degrees of fracture that correspond to the given temperature and zero load in transient and 
brittle states of medium). Using the fourth-order polynomial in u enables one to describe the existence of two 
stable steady states to one of which (depending on initial conditions) the medium relaxes upon load relief. 
These two steady states of equilibrium are separated by the intermediate unsteady state ua = (ul + u2)/2. 

In a certain range of variation of stress and temperature the medium can be in a state of relatively 
stable physical properties (the values of physical quantities are close to those at equilibrium), and then it 
changes its properties, jumpwise entering into another rheological state. Thus, the degree of fracture is close 
to the corresponding values of (0, ul, u2, and 1). With change in the rheological state, the degree of fracture 
changes jumpwise. 

It is necessary to ensure the continuity of transition of bulk media (u = 1 and 2#A = u 2) to a limiting 
unsteady state in which when the elastic potential loses convexity: U = 0 when { = {* = 2/z/u. 

The limiting state is achieved when the loading point emerges on the fracture surface, i.e., at loads 
resulting in discontinuity decay or shear that can grow without an increase in the load. To describe the 
behavior of bulk media and the features of deformation in the limiting state, one can use a deformation 
model. The model takes into account the governing properties of the media such as dilatancy, zero resistance 
to tensile stresses, limited ability to strengthening, and the instability of limiting deformation. The equations 
that relate strains with stresses under loading of bulk media in terms of deformation theory are constructed 
in [12, 13]. 

Considering the properties of the model, one can assume that the viscosity coefficients are variable 
parameters. The state of a material that is stable with respect to the degree of fracture is consistent with the 
regime of steady-state creep (accumulation of irreversible strains). A change in the degree of fracture leads 
to a change in the creep rate and a jump of viscosity. At a low degree of fracture and - v / ~  ~< { ~< {0 (overall 
compression and small shear), a high-temperature creep regime can occur. At high temperatures, viscosity 
decreases sharply. To describe such transitions, it suffices to assume the presence of jumps in the dependence 
of the medium's viscosity on u, T, and p. 

The quadratic dependence of energy on Vu is the simplest for an isotropic medium. In accordance with 
(2.10) and (2.11), the stress tensor and the equation of kinetics of u become 

P~# = Aell~Sc,# + 2#ez~B + (~(~7v) -- H)(5~a + 2r/e~# - 2~5~7o, u~g#u, 

dl/, (1 ( Ul -J-112) ) 
a S  = C . p L ( U 0  - U , )  - 4 D ( u  - - u 2 + 2a Xu , 

where Au = V~Vau.  
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The equation of kinetics of u can be used to describe the dynamic effects associated with transition 
from one theological state to ,~nother. The transition zone or the failure front are determined by specifying 
the parameter 6. 

The values of the parameters A0, /~0, Ai, ~ul, D, ul, u2, and ~ should be determined experimentally, 
and the selection of the initial distributions of u and f(u) should be consistent with the properties of the 
quantiti~ obtained from qualitative analysis. 

Thus, we constructed a model for a different-modulus viscoelastic body that makes it possible to 
describe the presence of various rheological states and to take into account the different-modulus properties of 
material and the nonlocal character of failure. The model is sufficiently simple and can be used for numerical 
simulation of complicated processes in irregular media, and for solution of a number of practical problems in 
geophysics and mining engineering. 

The work was supported by the Russian Foundation for Fundamental Research (Grant 94-01-00743). 
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